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Executive Summary

This project approached the design of a monoped hopping robot. This jumping robot, Jax,
operated by actuating a pneumatic cylinder timed to resonance with its natural landing period to
perform consistent consecutive hops. The purpose of research into monoped hopping designs is
to branch into legged locomotion. After achieving untether three-dimensional hopping, it would
next be possible to approach two legged running or four legged running.

Jax’s design is a double-acting pneumatic cylinder that uses a solenoid valve to actuate
the leg by evacuating the lower chamber. Its design stemmed in part from the research of Marc
Raibert at the MIT Leg Lab where he researched legged locomotion before founding Boston
Dynamics. Jax was controlled via a pacemaker type control system that actuated its leg with a
delay time relative to sensing landing. It could also be controlled on a two-dimensional tether
with a servo to control body angle.

From this project, we gathered a good deal of information on legged locomotion and have
placed ourselves in a good place to move forward and achieve two-dimensional free motion with
additional time to fine tune the control system. In general, the weaknesses and major influences
stemmed from poor time management in the beginning of the semester when too much time was

spent trying to perfect the one-dimensional motion which we later found to be impossible.
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Introduction

The field of legged robotics has had a sparked increase in recent years, thanks to
blockbuster science fiction movies and technological advancements in robotics and sensing. As
the thought of robotics becomes a more present part of our daily lives, there is a need that the
robots are capable of navigating more than simply flat-and-wide courses — to evolve beyond the
limits of the wheel. The importance of this work can be seen in numerous physical applications,
from assistive robotics to adaptive military transport, and even natural disaster rescue operations.

At the moment robots are primarily wheeled systems, restricted to routines along smooth,
level, horizontal surfaces. Though there are improvements to wheels and systems to allow them
to access rougher terrain, these systems, too, are still incapable of the feats of exploration capable
in legged systems found throughout nature. It is with this mindset that scientists and companies
have investigated what is an otherwise untapped field in locomotive robotics.

Our approach in studying these legged systems is very similar to the approach of the MIT
Leg Lab'. In order to understand legged movement, it is important to understand the simplest
type of legged movement, that of a one-legged hopping robot. By understanding the motion and
control systems that govern this system, the development of two-legged and four-legged systems
becomes far more clearer and logical.

This design project began by studying previously attempted designs and understanding
their primary differences and strengths, as well as making key design decisions such as the
number of legs, types of stabilization, and methods of actuation. An intense literature and patent

search was conducted out of this to aid in our understanding of these topics, what successes and

"' Official MIT Leg Lab Website. (http://www.ai.mit.edu/projects/leglab/background/background.html)
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failures have come out of past designs, and what challenges to expect moving forward. Though
initially an attempt was made at a statically and dynamically-stable two-legged hopper, using
primarily brushless DC motors as actuators, as well as considerations of a one-legged mechanical
spring and a one-legged gas spring design, our final design iteration resulted in a one-legged,
dynamically-stable, pneumatically-actuated hopping robot.

Our levels of success from here were clear. The first level of success was to achieve
hopping in one-dimension. This essentially comes down to creating a working leg design that is
capable of achieving an appropriate vertical leap. It was also necessary to develop a control
scheme for determining when the leg extends and contracts during each hop, and at what
(resonant) frequency the leg would hop the highest. For this level of success, a test platform was
designed using a stand and parallel bars with linear bearings, to constrain all hopping of the robot
to a vertical motion normal to the floor.

The second level of success was to achieve hopping in two-dimensions. This required not
only that the robot be capable of hopping at its resonant frequency, but also that a control scheme
for balancing be implemented. This control scheme needs to read, in real time, both the angle of
the leg and the body, and adjust both when the robot loses balance in the horizontal direction. For
this level of success, a test boom was designed such that it travels along a fixed hemisphere on a
surface, restricting motion to polar and azimuthal motions which were approximated as vertical
and horizontal.

The third level of success was to achieve hopping in three-dimensions. Untethering the
robot from any constraints, the robot would be free to move in three dimensions, assuming any

wired electronics or peripherals do not constrain the ability to hop. The mechanism used to move



the leg is then required to move the leg in a two-dimensional plane, and the IMUs must take into
account both pitch and roll angles. This would be a similar control scheme to the
two-dimensional hopping, however two separate angles would be controlled simultaneously to
balance the robot. The fourth level of success was to achieve various feats of locomotion in

either 2D or 3D, from path following, to object detection, to even somersaults.



Background Information

Literature Search

Our initial literature search led us to a number of meaningful resources, most
significantly including the pros and cons of previously conceptualized and tested designs. Each
team member was tasked with finding and reading at least five sources, from textbooks to
patents, and rank their top 3 choices for presentation to the rest of the group. This systematic
approach led us to extensive and invaluable resources.

The most crucial of these resources is the textbook Legged Robots That Balance by Marc
Raibert!"), founder of the MIT Leg Lab and later Boston Dynamics™. This book details
extensively their team’s findings as they progressively studied locomotive robots, from
two-dimensional monopedal robots, to three-dimensional monopedal robots, to bipedal and
quadrupedal robots, and finally to the work and study of movement such as running, flipping,
and stair climbing. Another crucial find was a textbook called Robotics (Modeling, Planning,
and Control)?!, which provides a clear introduction to the world of robotics, including
kinematics, dynamics, controls, and environment sensing. The extensive bibliographies of both
of these books have been crucial to our further research into hopping robots.

Patent Search

Our literature search also revealed a number of interesting patents amongst the different
design approaches carried out by various engineers. One of these included a leg design aimed at
improving inefficiencies found in the MIT Leg Lab designs, moving away from their use of
pneumatic cylinders as leg actuators and instead towards a springed four-bar mechanism leg with

two-way symmetry, cutting the necessary rotational torque needed in half .



Designs Reviewed
—  The Penn Jerboa: A Platform for Exploring Parallel Composition of Templates™*!

o A design loosely based on the jerboa animal, this bipedal hopping robot was the
inspiration for one of our earliest designs. The robot utilized a tail in order to act
as counterbalance and correct orientation in the air. It was a design that we
pursued in detail, but was ultimately abandoned because of its complexity.

— Minimalist Jumping Robots for Celestial Exploration!”!

o This design incorporated a spring-loaded four-bar mechanism that was
instrumental in our second design for Jax. The robot itself, though, was not
dynamically stable and was intended to aim, release the spring, jump, and land in
any orientation at which point it would have a mechanism to right itself. We were
not a fan of the concept that it was intended to land falling over and had to right
itself after every jump, but were intrigued about the four-bar spring possibility.

— Trajectory Planning of a One-Legged Robot Performing a Stable Hop!®

o This interesting design was dubbed the “Pixar Lamp” in our studies of it because
of the way it achieved hopping. It would bend down, and force its weight up,
jumping with all its weight similar to the lamp in the opening scenes of any pixar
movie. While an interesting concept, it was still only statically stable and not what
we decided to pursue.

Experiments in Balance With a 2D One-Legged Hopping Machine!”!
o In the end, we went back to the basics and found the work of Marc Raibert’s

earliest work. His original one-legged hopping robots were referenced by almost



every paper we consulted. We traced his work back to his beginnings where he
used pneumatic cylinders to actuate dynamically-stable hoppers in 2D and then

3D. It was these designs that inspired Jax’s final iteration.



Design Overview

Design Details
1. Leg Design
One Dimensional Design
Both the one-dimensional and two-dimensional legs are based on the same pneumatic
piston-cylinder assembly. The specifics of the piston-cylinder are discussed in greater detail
further on, but to summarize, the top half of the cylinder is kept at a closed pressure thus making
it act as a spring while the bottom half of the cylinder is alternated between a high pressure to

compress the cylinder and atmospheric pressure to extend the cylinder.
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Figure 1: Pneumatic circuit design. Brings compressed air of set volume through a system of
regulators to power pneumatic actuator for repeating jumping

In the one-dimensional design, the design itself is relatively bare. Because the movement
is constrained to simple up and down linear motion, there is no need to reinforce the cylinder as
done in the 2D Jax design. The design itself entails a 3D printed mounting clamp attached to the
cylinder as well as a 3D printed foot. The foot itself is made of three 3D printed pieces along

with a rubber polyurethane “toe”. The toe was made in a 3D printed mold by mixing two



chemicals together and letting them sit for a few hours as they cured into a solid, rubber
structure. Two 3D printed pieces then encapsulated the top of the toe to allow it slight movement
and allow for the toe to possibly activate a button in order to indicate when the foot was on the
ground (this ended up being an unnecessary feature). Finally a 3D printed coupler piece holds

the other two pieces together and connects to the bottom of the piston itself.

Figure 2: The one-dimensional Jax design

Two Dimensional Design

The two-dimensional design is slightly more involved than the one-dimensional, but the
underlying principle is the same. The largest change to the pneumatic cylinder in the 2D design
is an slightly extensive support structure. The cylinder is flanked by two case-hardened
8mm-diameter rods. The rods act as followers for two linear bearings which in turn are attached

to Ya-inch rods which are screwed into a 3D printed “ankle.” The ankle is connected to the same
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two 3D-printed parts and polyurethane toe that are used for the foot in the one-dimensional
design. Specially purchased sized bore clamps were purchased in order to hold the rods and

bearings together.

Figure 3: Jax 2D Design

The second aspect of the 2D design is an inertial body and servo which is used to rotate
the pneumatic cylinder in order to keep Jax balanced. Ideally, the 2D Jax design was meant to
rotate freely around a supporting boom that constrained it to the 2D plane. The body itself would
rotate and then control a servo which would control the leg angle. One key assumption made
was that the body was supposed to be much heavier than the leg itself. This was made so that the
body’s inertia would allow the leg to rotate in the air without changing the relative position of the

body in the air. Thus a long-shaped body with weights on the ends was necessary. One original
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consideration was to keep Jax untethered and run air off compressed air cylinders directly on the
body. Unfortunately, the compressed air cylinders were too small to provide any sort of

sustained jumping, and ended up acting only as the needed inertial counterweights.

The servo itself is attached to the bottom of the body and supported with an Actobotics
servo block. This provided the necessary support and rotation of the servo that allowed easy
attachment of the piston to the body. Two IMU accelerometers are also placed on Jax in two
key positions. One IMU is placed in the center of the body in order to get data on the rise and
fall of the entire robot as well as the body’s roll angle relative to the ground. The other IMU is
placed directly behind the pneumatic cylinder and reads the angle and acceleration of the leg

relative to the body.
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2. Test Platforms and Support Structures
One-Dimensional Track and Test Platform
A One-dimensional track was designed primarily using 80-20 aluminum extrusions and
hardware found throughout the mechanical mechanical engineering lab. The track was originally
used as a test platform for running IMU data and learning how the pneumatic cylinder works, but
once the design was finalized and the 2D boom was built, the 1D test platform became used as

tracks primarily for the standalone 1D version of Jax.

Figure 5: The one-Dimensional Test Platform and Frame

The platform is effectively a rectangular frame of 80-20 extrusion stood up vertically.
Along the inside length, case-hardened 12-mm diameter precision rods are secured for linear
bearings to follow. The linear bearings are attached together with more rods to a center plate

where the 1D Jax leg connects.
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2D Boom

For the 2D design, the support structure is relatively simpler. The structure entails a
simple square-extruded-aluminum boom on a vertical 80-20 extrusion about the same height of
the robot. The boom is connected to the extrusion on a rotational bearing allowing the boom to
rotate freely on the axis of the extrusion. The boom itself is also connected about 2 feet from the
end in order to provide a counterweight system to mitigate the effects of gravity on the boom and
robot thus lengthening the time between jumps, easing the burden of computation and reducing
noise in measurements. The far end of the boom has a connection piece and a swivel hub where

the 2D body attaches and is allowed to rotate freely.

Figure 6: 2D Support Boom
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3. Control System
One-Dimensional Controls

For one-dimensional jumping, it was set out to automatically determine resonant
frequency with accelerometer data. After much trial and much more error, it was determined that
this would be impossible. Jumping at a frequency that is not resonant provides inconsistent data.
Any two jumps could increase or decrease in jump height and period almost randomly.
Additionally, approaching the resonant frequency does not guarantee any increase in jump height
or regularity in jump height and period. The only method that was successful in automatically
determining resonant frequency was to take 20 successive jumps, process the accelerometer data
with a Fourier Transform, and average the largest peak frequencies to determine the next
frequency to jump at. This next thrust frequency would be processed the same way and the
recursive function would eventually converge.

Even still, many problems occurred with this method. It still requires some sort of input
as to when to trigger the thrust. Using accelerometer data, there was not enough resolution on
such a small timescale to anticipate the peak acceleration, so it was necessary to manually input a
delay time: a value in milliseconds that would time the thrust to be a certain time after
touchdown.

Because this crutch was necessary anyway, it was decided to use this to manually target
the resonant frequency within a shorter amount of time. To do this, the delay time was mapped to
a potentiometer. By varying the delay time, the jumping frequency could be indirectly varied.
Additionally, the jumping frequency -- calculated by performing a Fourier Transform on the real

time accelerometer data -- was shown in real-time and it was easy to determine when the
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resonant frequency was matched because the Fourier Transform showed the first two harmonics
and additionally Jax would shake the table from the increased force.
Two-Dimensional Controls

In two dimensions, the one-dimensional controls still apply; however, additionally
balance must be accounted for. There are two phases of jumping in a controls point of view:
flight and stance. During the flight phase, the foot must be positioned such that the thrust of the
next jump will provide Jax with appropriate net velocity. Generally for these cases, the goal is to
neutralize any velocity incurred. This is done by angling the foot opposite of the direction of
travel. This is simply done by taking the current foot angle in the air and placing it at a scaled
angle on the other side. This would hypothetically eventually converge the leg angle to zero, but
due to uncertainties and imperfections in the leg angle, floor angle, etc, will not truly converge.

The other phase of controls is the stance phase. During the stance phase, it is the goal of
the control system to neutralize any rotational velocity currently on the system. It would do this
by rotating the body angle in a way equal and opposite to the torque already on the system
causing tipping. This could be done using gyroscopic data to neutralize rotational inertia or by
using differentials on gyroscopic data to determine angular acceleration and then values for
torque.

4. Costs

Mechanical Costs

In our design we were able to repurpose a lot of material that was found in the
Mechanical Engineering Lab. A lot of test and support structures were made through 80-20

hardware as well as free 3D printing in the Columbia Makerspace. Some of the more specific
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materials could not be found at Columbia and were bought. The following table delineates the

costs of materials bought:

Product Name
HS-7950T8 Servo Motor

Standard HiTec Servo
Block

0.84 Inch Bore Clamp
.25 Inch Bore Clamp
15mm Bore Clamp
8mm Set Screw Hub
3 Inch Aluminum Bracket
Flat Triple Bracket
18 Inch Aluminum Bracket
Swivel Hub

&mm ID - 45mm L Linear
Ball Bearing

8mm D 330mm L Precision
Shaft

Smooth-On Polyurethane

Vendor Cost
Servo City $149.99
Servo City $26.99
Servo City $5.99
Servo City $5.99
Servo City $5.99
Servo City $4.99
Servo City $3.99
Servo City $2.49
Servo City $13.99
Servo City $6.99
Servo City $3.49

VBX Bearing $10.37
Lee’s Art Shop $2

Quantity

1

—_ = = NN R NN ==

\S)

4oz

Total Cost
$149.99

$26.99

$11.98
$11.98
$23.96
$9.98
$7.98
$2.49
$13.99
$6.99

$6.98

$20.74

$2
$296.05

Table 1: List of Mechanical Components and their costs in the 2D Body

It should be noted that the primary vendor used was Servo City. The reason for this is

twofold. Firstly, Servo City offers a very powerful framework for robotics called Actobotics.

This framework allows for pieces fitting together very well and allows for quick assembly and

disassembly. We decided early on on using this framework for our ease. Secondly, we were

sponsored by Servo City, and they offered us a 15% discount on all products bought from them.

This discount was not taken into account in the above table, but is described in the appendix.
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Electrical Costs

Several components were either reclaimed from previous lab courses (Arduino, buttons,
potentiometer, etc) or were provided by the Electrical Engineering department (power supply,
banana plug cables, etc). In addition to this, a budget was provided by the Electrical Engineering

department. The following table delineates the costs bought from those funds:

Product Name Vendor Cost Quantity Total Cost
6 Degrees of Freedom IMU o - 4oy $19.95 2 $39.90
Breakout
Proto Shield for Arduino Kit )
- Stackable Version R3 Adafruit $9.95 1 $9.95
Premium Female/Male .
Jumper Wires (40) 12" Adafruit $7.95 1 $7.95
Servo Extension Cable 12" Adafruit $1.95 2 $3.90
$61.70

Table 2: List of Electrical Components and their costs
Analysis
1. Pneumatics

Jax operates by alternating the pressure in the lower chamber of a double-acting
pneumatic cylinder between a high pressure (at 70 psi) and atmospheric pressure. This is pushed
against by a low pressure in the upper chamber (at 20 psi).

The pneumatic circuit draws its compressed air from a volumetric tank source. This is
first passed through a regulator which is set at 100 psi. That initial system is referred to as the
source. In testing, a constant-pressure system with a set output of 100 psi was used, but in
demonstration, a pressurized tank regulated to 100 psi output was used.

The output of the source then enters the true pneumatic circuit which consists of two

pressure regulators, a solenoid valve, and a double-acting pneumatic cylinder. First, the
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compressed air source is split into two pathways, where each pathway passes through a pressure
regulator set to a constant pressure. The upper split then is stepped down to 20 psi and passes
through a check valve to allow the pressure in the upper chamber to rise as it compresses. It also
prevents backflow to the compressor, possibly damaging the regulator. The bottom split is
stepped down to 70 psi and output to a solenoid valve. When the solenoid valve is actuated, the
inlet air goes to the lower chamber of the pneumatic cylinder, which is the second output. When
the solenoid valve is in the unactuated position, the cylinder connects to an open exhaust and the
inlet connects to a stopper.

The pneumatics for each jump work in a cycle: thrust, flight, and landing. Thrust starts
when the body reaches the lowest point and highest acceleration of its ground phase. At this
point, the solenoid valve is toggled from the actuated to the unactuated state, evacuating the
chamber and thrusting the leg downward while the body moves upward. This adds an additional
force with each jump, in order to make up for energy losses.

Once it leaves the ground, it leaves the thrust phase and begins the flight phase. This
section of the jump cycle i1s characterized by an acceleration of 1 g. At the start of this phase, the
solenoid valve is again actuated. This retracts the leg, allowing for a slightly higher overall jump
height.

The final phase of each jump is the landing phase. This phase begins at touchdown and
ends with the start of the thrust phase. There is no characteristic response by the control system
during this phase. During landing, the piston compresses to create a pressure differential between
the chambers that is reused in the thrust phase and combined with the added energy of the

evacuation to jump.
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To calculate the necessary pressures and the hopping motion, the work-energy theorem
can be used. By using pressure work, initial equations can be written. Since thrust and landing

are characterized by two different motions, the equations are written separately. The equation for

thrust is:

lim
x-0

N
ﬁDz [Pu.dx- | Pdx Z(%sz)Jr(mgS—mgxo),
X0

S§-x,

for x = [x,,0), and the net-work done by the system during thrust is equated with the increase in
potential and kinetic energy. Additionally, by equating the total kinetic and potential energy to
the peak potential energy, mgH ., an updated equation can be written that simplifies the

right-hand side.

lim
x-0

S
LD*| [ Pu(x)dx - | P (x)dx|=mgH,.
Xo

S-x,

Now, by making the assumption that P, remains constant during the thrust phase (a
reasonable assumption due to the near-instantaneous evacuations of the lower chamber), force,
balance, and ideal gas law equations can be manipulated and generalized for x as P,(x) = Pu,O%
and the above equation can be rewritten. In this process, another necessary, but not great,
assumption is made where no potential energy is initially stored. This assumption allows for the
calculation of x, = PP;';OS (the initial location of the piston), and inherently applies that at time

t = 0, the upper and lower pressures are equalized.

lim
x=0

1p? jS (Pof)ac-P, [ ax|=20{P,Sin(7=)+P,S(1- PP—)} — mgH,
SP,ofP, ’ S(1-P,o/P)) ’ " !
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This creates a simple closed form equation that provides a decent approximation for the jump
height as a function of entirely known variables: inner bore diameter, lower chamber pressure,
stroke length, body mass, and the pressure ratio. All of these values are intrinsic to the system
and not independent except for the lower chamber pressure and the pressure ratio. Thus, this

equation can be plotted for jump height versus pressure ratio for various lower pressures.

= 2hs { S m (o) (1- 52}

The function above provides us with a simple, linear, closed-form function that shows for

. . ) . P
any pressure ratio, the maximum jump height occurs at - = e? =7.389. Jax operates at a
u,0

pressure ratio of about 3.5, which is 95% of the maximum jump height. While it could be
optimized to move more efficiently, the regulators in the system do not allow much resolution at
pressures approaching 100 and 0 ps, so the values were instead kept respectively at 20 and 70
psi. Additionally, due to the assumptions made, it can be assumed that not only would the jump
height be lower at any pressure ratio, the peak would also likely shift to the left. This is because
we are neglecting the potential energy already in the system at the start of the thrust phase. This
potential energy would take some of the load off of the pressure ratio and allow a smaller
pressure differential to achieve the same jump height, causing the curve to shift to the left. This

lower pressure differential causes less work to be available, and achieves a lower overall height.
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Jump Height Maximization For Pressure Ratios
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Figure 7: Jump height curve for mass of 1 Ib, inner bore diameter of 0.75”, lower chamber
pressure of 70 psi, and stroke length of 8. The jump height is relative to the location of the
center of mass in its fully compressed state.




2. Electronics
Overview

For controls and data acquisition an Arduino was used, an open-source microcontroller
development platform that is inexpensive, easy to use, and allows input-output system
prototyping. Relevant to this work, Arduino is capable of analog input, digital input and output,
and independent operation via programming in the C/C++ based Arduino programming
language. Several electronic components were attached to the device as either inputs or outputs
on the system.

For the one-dimensional setup, the inputs included a momentary push button, a toggle
switch, a potentiometer, and an IMU (inertial measurement unit). The toggle switch controlled
whether the device operated in a manual hopping mode, or an automated hopping mode. The
sole output was a binary signal that controlled the solenoid valve that governed the extension and
retraction of the pneumatic actuator. In manual hopping mode, the solenoid valve was controlled
by the momentary push button, which allowed a user to control each jump in a discrete manner.
When in automatic hopping mode, the solenoid valve opened and closed in a cyclic manner,
where the time delay between jumps was controlled by a potentiometer.

The two-dimensional setup contained inputs including two potentiometers, two IMUs, a
momentary push button, and a toggle switch. The outputs consisted of a signal that controlled the
solenoid valve, as well as a PWM signal that controlled the angle of the device’s leg through a
servo motor. Similar to the one-dimensional setup, the toggle switch controlled the mode in

which the device would function, either manual hopping or automated hopping. Both modes
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were very similar to their one-dimensional counterparts, with the main difference being an extra
potentiometer that controlled the servo angle.
IMU

The IMU used (LSM6DS3) contains an accelerometer, which measures proper
acceleration in three dimensions (i.e. acceleration relative to free-fall, units of g), as well as a
gyroscope, which measures the rate of rotation about those three-dimensional set of axes, for a
total of six degrees of freedom. The device communicates with the Arduino through I°C
(Inter-Integrated Circuit), an asynchronous circuit communication system that supports multiple
master devices to communicate with multiple slave devices. In the one-dimensional setup, a
single IMU was connected to the Arduino via four wires (see Figure 8): power (3.3 V), ground,
SDA (I*C data line), and SCL (I*C clock line). The Arduino was then able to communicate with
the IMU through the use of open-source Arduino software libraries. We used a MATLAB-coded
interface to acquire vertical acceleration data from the IMU to explore the frequency-domain

components of the locomotive mechanism (see Figure 9).

2
i wn

LR
- Al

Figure 8: C wiring for operation of the LSM6DS3 6-degree of freedom inertial
measurement unit.
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Figure 9: Real-time acquisition using IMU vertical acceleration data from a test in automated
hopping mode with hopping frequency set around 2.7 Hz.

Upper subplot: Displays the amplitude (magnitude) spectrum of the acquired data. The most
prominent peak depicts the fundamental frequency (near-resonance) of the hopping. Peaks
corresponding to higher-order harmonics accumulated over time.

Lower subplot: Real-time plot of vertical acceleration and hopping frequency.

Solenoid Valve

Solenoid valves are electromechanically operated and are highly reliable in providing fast
switching between ports. The actuation of most solenoid valves requires an input voltage
between 6 and 12V, which is larger than the voltage that the Arduino microcontroller can provide
via its regulated 5V supply. To circumvent this problem, power was supplied by a 9V, 1A DC
power adapter connected to the Arduino microcontroller’s built-in voltage regulator (V,).
Because the solenoid valve is an inductor, a diode was used to eliminate transient voltages that

could surge when the magnetic coils of the valve lost power. These transient surges could

potentially damage the surrounding electronics without protection from the diode. In order to
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provide the required current draw of the solenoid valve, a TIP101 NPN Darlington pair
(transistor) was used to amplify the available power drawn from the wall plug connected to the
Arduino’s voltage regulator. Like in most transistor circuits, a current-limiting 1k€) resistor was
placed at the base of the transistor to also prevent overloading the control line (base) of the
transistor. Figure 10 below depicts a circuit schematic of the switching circuit used to control the

solenoid valve.

Vin 4 1N4007 VALVE
= O ARDUINO
TIP101
1KQ  NPN

1

Figure 10: Transistor-based circuit required to operate solenoid valve using the Arduino
microcontroller. The port named “Arduino” represents any digital output pin that may be used as
a control line.

Servo Motor

A servo motor was used to control the leg and body of the robot in the two-dimensional
setup. Both the top of the actuated leg and the center-of-mass of the body were placed about the
same axis of rotation. This would allow a single servo to actuate either and both the leg and the
body. Under the assumption that friction at the point of contact between the leg and the floor
surface would be sufficient to prevent the leg from rotating upon actuation the servo, it would be
possible to use a single motor to independently rotate the leg (flight phase) and the body (stance

phase). With respect to the rest of the electrical components involved in this design, the servo

motor required the highest electrical power input, so an external DC power supply (KeySight
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Technologies U8032A) was used to enable the motor at its highest possible performance. Like
for all servo control, the angle (of mechanical rotation) was determined by the width of an
electrical pulse (PWM signal) that was applied to the control wire. To ensure proper waveform of
the pulse-width modulated signal controlling the servo, the ground of the external power supply

was connected to the ground of the microcontroller.
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Figure 11: Schematic of servo motor circuit. V,, represents voltage from an external DC power

supply set at 7.4V. An external supply was utilized to provide sufficient power input. The motor
was controlled by a pulse-width modulated (PWM) signal output from the Arduino’s digital pin,
represented by the D11 port. The ground of the external power supply was connected to that of
the microcontroller to ensure proper PWM output.
Overall Circuit Design
Altogether, the final design iteration utilized the following electrical components (see
Figure 12) connected to the Arduino, with the exception of the servo motor which was powered
externally. The one-dimensional design utilized a solenoid valve, a momentary push-button, a
toggle switch, and a potentiometer for locomotive actuation. One IMU was mounted on the leg
for data acquisition and for studying of the frequency-domain components of the hopping
mechanism. In the two-dimensional design, a second potentiometer was added for servo control.
A second IMU device was mounted on the body to allow quantifying the roll about the plane of

the body. The IMU on the leg was also configured to calculate the pitch and roll about the plane

of the leg’s motion. Similar to the one-dimensional setup, real-time data acquisition was possible
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using a MATLAB-scripted interface that displayed the cumulative amplitude spectrum (FFT) and

sampled accelerometer readings.
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Figure 12: Overall electronic circuit schematic using the Arduino microcontroller. All provided
Ports labeled D7, DS, and D9 represent actual digital I/O pins used in the final design of the
robot. Upper left: Transistor-based solenoid valve circuit. Middle and lower left: Single-pole,

single-throw (SPST) push button and toggle switch circuits. Upper right and middle right:

Potentiometer circuit - ports AQ and Al represent actual analog input pins used. Lower right:

Schematic representation of the P'C mode wiring of two inertial measurement unit devices.

3. Control System
One-Dimension

The One-Dimensional Jax only has the ability to extend and retract his leg. In Manual

Mode, this is done via a push button. The default state is set to be with the leg retracted, the
actuated state. When the push button is pressed, the leg extends, and when the push button is

depressed the leg retracts. In addition, the processing software runs and gives the user a real time

value for the jumping frequency and runs the accelerometer data through the Fourier Transform.
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In Automatic Mode, the button pressing is done via computing. This process essentially
works like a tunable pacemaker. The arduino senses the initial impact that is the landing and
then, after some delay time set by the user, extends the foot. Then, when the arduino senses the
body has left the ground, it retracts the foot. This methods maps the output of the potentiometer
onto a small range of delay times which uses the arduino’s internal clock circuit to fire a specific
time after it senses the initial impact. This method adjusts a fixed rate of jumping but does so by
quantifying the delay time between landing and thrust or the period of the landing phase.

Two Dimensions

The two-dimensional control system is largely the same. The Manual Mode and
Automatic Mode from above translate exactly from 1D to 2D. The only major difference is that
the acceleration values are read in the direction parallel to motion and are thus scaled
proportional to the sine of the angle of the leg. However, the general underlying principles
remain and both systems still operate effectively.

However, an additional control scheme had to be added to allow for angle control to
prevent tipping. The control scheme for this was taking another potentiometer and mapping its
range onto a smaller range of servo angle values. By turning the potentiometer, the servo rotates
by a scaled angle similar. The servo also operates in two modes: Manual and Automatic;
however, in both cases the servo knob’s function remains the same and it is only the jumping that

changes.
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4. Materials
a. Material Selection and Processing
Jax’s components were made of a short list of materials. All the parts were either aluminum,
3D-printed, or purchased through the ActoRobotics model set, aside from the foot pad made of
smooth-on polyurethane. The initial design was to primarily use the ActoRobotics set, however,
a desire to make the design more unique led to a more machined and printed design. Generally,
the conditions that determined the material were: size and weight, necessary strength, complexity
of shape, and production deadlines.

The largest parts that comprise Jax’s structure were purchased, such as the cross-beam
that is part of the ActoRobotics framework and the Bimba pneumatic cylinder. Additionally, the
pieces that bore the brunt of the weight and forces exerted were machined from aluminum, due
to the fragility of 3D printed plastics. However, 3D printed parts were often used due to their
light-weight and ease of production. This helped us to make Jax not be too heavy, as well as
allow us to work on other important components in parallel while they printed.

One unique material chosen for our design is the smooth-on polyurethane. For our
footpad, we needed a material that would have sufficient friction when in contact with the floor.
Originally, we planned on using a piece of rubber, but this proved to be very difficult to work
with. It was very hard to cut to shape, and it also proved difficult to use in conjunction with a
ground-contact push button. Instead, we utilized smooth-on polyurethane, that was molded into a
semi-spherical shape placed on the bottom of our device’s leg. This helped to provide angular

motion when testing 2D locomotion, something that we lacked with a flat rubber foot.
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b. Manufacturing and Assembly

The manufacture and assembly of Jax and all involved parts was very important. Since
the system is very susceptible to vibrations, special attention was paid to creating parts that fit
well, in addition to fasteners that helped to prevent the resonance from making things fall apart.
This lead to using force fits where necessary, as well as an ample supply of set screws and
washers. Due to all of this, Jax s construction was not a simple one, especially considering our
goal of weight and size reduction.

¢. Packaging & Shipping

Since Jax was not meant to be a commercial product, not much attention was paid to
packaging and shipping. Additionally, operation requires a large source of compressed air and
power which would not be shipped with Jax nor would it be expected to be bought separately.
That being said, the overall Jax system is relatively small, something that would lend itself to
styrofoam molds. This means that Jax could be shipped in a fairly small box, with little to no
danger and minimal assembly required.

If the two-dimensional design were to be shipped, Jax could be removed from the 2D
boom and both could be shipped in one box together with styrofoam cutouts to hold them safely.
This would require only an allen key to assemble upon delivery. The 1D Jax system could be
shipped without any necessary requirement. However, even in both of these scenarios, the power
and pressure systems would have to be acquired separately.

5. Ethical Aspects
It is important to take into account the safety considerations of this design. Particularly,

this design involves rapidly-moving parts and electrical components. Both of these attributes
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present a significant level of hazard for children, pets, and most inexperienced adults.
Precautionary measures must be taken while actuating the device, particularly due to the highly
compressed gas output of the pneumatic system. The large range of motion of the robot’s moving
limb is another characteristic that should one should be aware while operating. The presence of
compressed gas systems and pressurized containers would require familiarity with pneumatics
for safe and proper operation.

On the other hand, the electronic components of the design were ensured to be safe via
the use of proper voltage and/or current regulation; no custom power regulators had to be
assembled, and no significant heating was observed in the system. The only exception to the
safety measures taken in the design considerations was the use of a high-torque servo motor,
which has the ability to pull a large current. Though a current of around 2.5 amps may sound
scary on its own, this current was appropriately provided by a regulated power supply with
built-in shutdown when overloaded (i.e. excessive power supplied). If not provided by a
regulated output, the servo motor could pose potential hazards should it stall during operation. In
its fully assembled state, our current design poses no significant safety hazards with the
exception of proper knowledge of pressurized gas usage and power supply considerations for
moving parts (i.e. servo motors).

6. What We Learned

Creating Jax was a great learning experience for all of us. Besides the obvious experience

of designing a product from start to finish, there were many necessary skills we were required to

pick up along the way to aid in the overall design of Jax.
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From a mechanical point of view, perhaps the largest subject we learned is pneumatics.
Prior to this project, none of us had any experience in pneumatic design, and while Jax’s
pneumatic system was not overly complicated, it was useful to use and understand a pneumatic
system for the first time. What we foresee being the most useful skill learned over the course of
this project is the practical application of machining and details from our mechanical education.
From truly seeing how important the strength of a material can be, the crucial decision of
different types of fits, to just learning about the choice of screw and thread size, seeing the real
application of our education was truly appreciated.

From the electrical engineering perspective, studying the interface of the locomotive
mechanism and the electronic and controls aspects of the design was particularly challenging.
Controls algorithms did not seamlessly translate from analytical results to applied experiments
by coding. Also, while programming in the Arduino environment first required a better grasp of
low-level controls, the real-time operation of the robot was difficult due to sensors being
susceptible to noise. Aspects of the robot’s motion were obscured by other artifacts, such as
sudden perturbations caused by the pneumatic system as well as unexpected readings created by
the surface with which our robot was interacting. We used concepts borrowed from digital signal
processing (e.g. finite-impulse response vs. infinite-impulse response filters) to reduce noise and
filter irrelevant information from our sensors. Furthermore, we were able to create a convenient
graphical interface via MATLAB that resembled some basic capabilities of a digital oscilloscope,
such as real-time signal acquisition and simultaneous Fourier-domain analysis. Finally, in the
additive process from 1D to 2D design, it was important to consider the communications

protocol used amongst multiple devices, in this case, an Arduino and several sensors. In our
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considerations to further expand sensing, we also explored multi-microcontroller

communication, such as Arduino-to-Arduino networking (both wired and wireless).

Experiments & Test Results
1. Finite Element Analysis

An FEA Analysis was conducted on the leg design over concern of the 3D Printed pieces
breaking, and the piston rod choking. Tests were conducted at angles both normal to the ground,
as well as angled to the ground.

a. Assumptions

For all tests, materials were assumed to be either Aluminum 6061 or ABS Plastic for 3D
printed pieces. This was made to tremendously simplify the simulation process. It was also
assumed that the entire assembly is a rigid body. To further simplify the simulations, compressed
air was not modeled within the pneumatic chamber. Though this would be key in deriving
accurate results, my modeling the object as a complete rigid body rather than a pneumatic body,
the stresses would be far higher — compressed air would make the object more springy and
reduce stresses, so if we could prove through the rigid body simulations that the robot would not
significantly deform, we would not need to model the complexity of compressed gases in the
chamber.

Because the focus of the simulations was on the material and not the connections, all
pieces were assembled with the assumption of perfect surface contacts, thus further stimulating
the assembly as a rigid body. This assumes that all connections such as screws and bolts will not
be points of failure, and once again significantly sped up the simulation process, without

significantly impairing the nature of the results, relative to our purposes with the simulations.
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The models used in the simulation were created in the 2009 release of Creo Elements/Pro
(Pro/ENGINEER Wildfire 5.0), then imported and re-assembled into Autodesk Inventor 2016,
remaining faithful to all constraints in the physical robot. Finally, the model was brought into
Autodesk Simulation Mechanical 2016, from here on referred to as SimuMech, where the
resulting simulations were carried out.

In SimuMech, simulations were conducted under Static Stress with Linear Material
Models. This test assumes a static model with linear properties, undergoing a distributed load at a
specified location or number of locations. It was assumed that the majority of the weight would
be in the pneumatic cylinder, so this was where the weights are simplified in concentration. All
forces are acting normal to the robot, with the robot’s orientation normal to ground.

It 1s worth noting that after the first simulation, mesh size was dramatically reduced to
prevent the simulation from stalling. These simulations were run on Windows 7 Enterprise, 32.0
GB RAM, Intel(R) Core(TM) i7-4790 Processor running at 3.60 GHz — it is hard to imagine a
consumer-level computer more capable than this setup. The biggest limitation in this was the
complexity of the assembly, with 27 parts all carefully constrained. Because of this, there is an
upward limit regarding the accuracy of the simulations, no matter how many simplifications are
reduced.

b. Results

Figure 13 shows a preliminary FEA test on the leg design, using the simplified
assumptions above. Modeled at a mesh size of 100% according to SimuMech settings, the model
was meshed into 23951 elements and 362 nodes. Placed under a 10 Ib load, acting directly on the

pneumatic cylinder, the maximum displacement was a miniscule 8.915 x 10°in. As expected, the
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highest stresses were at the edges of the joints connecting each rod, as well as the 3D printed feet

acting in direct contact with the floor.
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Figure 13: Displacement of leg under 10lb load, normal to ground

Though these numbers were heavily skewed by the necessary simplified assumptions
above, a 10 1b load was our maximum expected load on the robot, so these results still suggest

deformity would not be an issue.
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Figure 14: Displacement of leg under 10Ib load, angled to ground
In the second simulation, the object was dropped at an angle with the same 10 1b force.
And this time there was a dramatic increase in displacement. As seen in Figure 14, there is a
maximum displacement at the top joint of 1.246 x 107 in, Though this is inconsequential to our
design, it is indeed indicative that our greatest points of failure in the design are the joints
between the rods. Assuming a repeated load like this would damage the 3D printed foot the most,
as well as for noise considerations, a polyurethane mold was cast for the end of the foot, greatly

reducing the stress on the joints and increasing shock absorptions.
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2. Frequency Domain Processing

With Jax jumping in either the 1D or 2D setup, the accelerometer data was gathered by
the arduino and passed through to MATLAB. In the arduino code is a low pass digital filter
which smoothes out the noisy signal before passing it to MATLAB. In MATLAB, specifically
the body angle and acceleration parallel to the leg were measured. Both values are measured
directly by the IMU and passed through simple functions to the arduino.

In MATLAB, we performed a real-time Fast Fourier Transform which converted our data
to the frequency domain (see MATLAB Source Code in Appendix). This was used to confirm the
ability of the user to find the resonant frequency. If the user is able to find the resonant
frequency, as Jax continues to jump, the harmonics start to grow with each successive successful
jump. And, even if the resonant jumping curve is already established, jumps out of time with the
resonant frequency will reduce the magnitude of the peaks and create some outside of the proper
channels.

Figure 9 shows simultaneous time and frequency data. After a significant number of
jumps, the major frequencies of the data, as found via a Fourier Transform, create high
magnitude peaks in the Fourier Transform in the top subplot. The data below is the
accelerometer data. The important information encoded in the accelerometer data is just how
each hop’s phase looks on an acceleration vs time curve. The first thing of note is that the
acceleration is measured as proper acceleration in g’s. This means that free fall is actually 0, and
Om/s*is 1g.

The lower subplot can be divided into three phases: flight; landing; and thrust. The

easiest section to define is thrust. The thrust section starts at every peak. Acceleration will reach
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a maximum at two points: when compression is at its largest and Jax is at its lowest; and when
the leg is extended, applying a large downward force on the ground. If these two points are to
converge on each other -- which happens when the controls are successful, this singular point
becomes the start of the thrust phase.

The thrust phase ends when the flight phase starts. This should theoretically be when
acceleration reaches 0 on the graph -- representing free fall. However, in this case, because of
noisy signals and jerk, the flight phase actually begins at the one lower peak caused by noise in
each cycle.

This phase ends when the landing phase begins, which would be when the acceleration

passes above 0. In reality, though, a threshold value is used because there is noise and jerk which

makes the value of the acceleration range within a small window even during free fall. So,
generally, the landing phase begins once the acceleration starts to climb rapidly or pass above

0.5.
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Conclusion

This project proved to be exactly as intended: a tremendous learning experience for all involved,
and an immersive education in legged robotics, as well as robotics in general. Our design process
was well executed, and immense research was put into defining our design problem, as well as
organizing the various limitations we face with each design choice. This process greatly aided us
moving forward with our prototyping phase, as we were able to redesign our robot through three
total iterations in quick succession, due to the limits of each design already laid out in our
research. By knowing these limits, once the problems with a design were obvious, the alternative
design required was often equally obvious. The design procedure taken, as well as a willingness
to significantly reverse step and redesign, was a crucial lesson learned in this project.

Regarding future iterations of the design, this project was particularly hindered by
expensive components. Many of our components, especially the pneumatic components such as
pressure regulators, gauges, solenoid valves, and pneumatic cylinders, were acquired
second-hand from the Department of Mechanical Engineering’s machine shop. However,
significant improvements could be made in buying versions of these parts that are often hundreds
of dollars. Regardless of this, however, our team did an excellent job of studying a foreign topic
to us and adapting in real time to what was learned, and for this we are deeply satisfied with our

capstone project.

40



Appendices

Appendix I: References

(I Raibert, Marc H. Legged Robots That Balance. Cambridge, MA: MIT, 1986. Print.
@ Siciliano, Bruno. Robotics: Modelling, Planning and Control. London: Springer, 2009. Print.

BIDelson, Nathan J. Dynamic Legged Robot. The Regents Of The University Of California,
assignee. Patent US7503410 B2. 17 Mar. 2009. Print.

MDe, Avik, and Daniel E. Koditschek. The Penn Jerboa: A Platform for Exploring Parallel
Composition of Templates (2015): 1-26. Web. 1 Feb. 2016.

BI'Burdick, Joel, and Paolo Fiorini. "Minimalist Jumping Robots for Celestial Exploration." Int J
Robot Res The International Journal of Robotics Research 22.7 (2003): 653-74. Web.

(61 Wu, Ting-Ying, T.-J Yeh, and Bing-Hung Hsu. "Trajectory Planning of a One-legged Robot
Performing Stable Hop." 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems (2010). Web.

[ Raibert, M. H., H. B. Brown, and M. Chepponis. "Experiments in Balance with a 3D

One-Legged Hopping Machine." The International Journal of Robotics Research 3.2
(1984): 75-92. Web.

41



Appendix II: Additional Financial Information

Table 3: Discounted Prices for Servo City Purchases

Product Name Vendor (Disf()(:;ted) Qty (DT;)st:(:uCn:::D
HS-7950T8 Servo Motor Servo City $127.49 1 $127.49
Standard HiTec Servo Block Servo City $22.94 1 $22.94
0.84 Inch Bore Clamp Servo City $5.09 2 $10.18
.25 Inch Bore Clamp Servo City $5.09 2 $10.18
15mm Bore Clamp Servo City $5.09 4 $20.37
8mm Set Screw Hub Servo City $4.24 2 $8.48
3 Inch Aluminum Bracket Servo City $3.39 2 $6.78
Flat Triple Bracket Servo City $2.12 1 $2.12
18 Inch Aluminum Bracket Servo City $11.89 1 $11.89
Swivel Hub Servo City $5.94 1 $5.94
8mm ID - 45mm L Linear Ball Bearing Servo City $2.97 2 $5.93

Total: $249.94
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Appendix III: Source Code

MATLAB Interface for Real-Time Acquisition and Frequency-Domain Study

clear;
clc;
close all;

%User Defined Properties

serialPort = '/dev/tty.usbmodem1421"; % for Mac OS X

% serialPort = 'COM3"; % for Windows

baudRate = 115200;

plotTitle = 'Serial Data Log'; % plot title

xLabel = 'Elapsed Time [s]'; % x-axis label

yLabel = 'Data’; % y-axis label

plotGrid = 'on'; % 'off' to turn off grid

min = -2; % set y-min

max = 6; % set y-max

scrollWidth = 2; % display period in plot, plot entire data log if <=0
delay = 0.00001; % make sure sample faster than resolution

plotTitle2 = 'Single-Sided Amplitude Spectrum of y(t)';
xLabel2 = 'Frequency [Hz]';

yLabel2 ="Y(f)| [dB]';

min2 = 0;

max2 = 2;

%Define Function Variables
time = 0;

data=0;

count = 0;

trigger = 0;

freq = 0;

fourierFreq = 0;

magData = 0;

%Set up Plot

ax1 = subplot(2,1,1);

filterGraph = plot(ax1, fourierFreq, magData);
title(plotTitle2,'FontSize',18);

xlabel(xLabel2,' FontSize',15);
ylabel(yLabel2,'FontSize',15);

axis([0 10 min2 max2]);

grid(plotGrid);

43



ax2 = subplot(2,1,2);

plotGraph = plot(ax2,time,data,'-mo’,...
'LineWidth',1,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63]....
'MarkerSize',2);

hold on

plotGraph2 = plot(time,freq,'-mo’,...
'LineWidth',1,...
'MarkerEdgeColor','r',...
'MarkerFaceColor',[.49 1 .63]....
'MarkerSize',1);

hold off

title(plotTitle,'FontSize',18);

xlabel(xLabel,'FontSize',15);

ylabel(yLabel,'FontSize',15);

axis([0 10 min max]);

set(ax2,"YTick',[-1012345678]);

grid(plotGrid);

%0Open Serial COM Port

try
s = serial(serialPort,'BaudRate',115200);
disp('Close Plot to End Session');
fopen(s);

catch
fclose(s);
error('Try failed.");

end

tic

try

while ishandle(plotGraph) %Loop when Plot is Active
stringData = fgets(s);
dat = sscanf(stringData, '%f %d %f");

if(~isempty(dat) && isfloat(dat)) %eMake sure Data Type is Correct
count = count + 1;
time(count) = toc; %Extract Elapsed Time
data(count) = dat(1,1); %Extract 1st Data Element
trigger(count) = dat(2,1); %Extract 1st Data Element
freq(count) = dat(3,1);

%Set Axis according to Scroll Width
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if(scrollWidth > 0)

set(plotGraph,'XData',time(time > time(count)-scrollWidth), Y Data',data(time >

time(count)-scrollWidth));

set(plotGraph2,'XData',time(time > time(count)-scrollWidth),"Y Data',freq(time >

time(count)-scrollWidth));

end

axis([time(count)-scrollWidth time(count) min max]);
else

set(plotGraph,'XData',time,'Y Data',data);
set(plotGraph2,'XData',time,'Y Data',freq);

axis([0 time(count) min max]);

end

if (length(time) > 50)
trimTime = time(50:end);
trimData = data(50:end);
Ts = mean(diff(trimTime));
Fs=1.0/Ts;
L = length(trimData);
NFFT = 2"nextpow2(L);
fourierFreq = Fs/2.0 * linspace(0, 1, NFFT/2 + 1);
fourierData = fft(trimData, NFFT)/L;
magData = 2.0*abs(fourierData(1 : NFFT/2 + 1));

set(filterGraph,'XData',fourierFreq,'Y Data',magData);
end

%Allow MATLAB to Update Plot
pause(delay);

end

%Close Serial COM Port and Delete useless Variables
fclose(s);

clear count dat delay max min plotGraph plotGraph2 plotGrid plotTitle s ...
scrollWidth serialPort xLabel yLabel ax1 ax2 Fs Ts L max2 min2 ...
NFFT plotTitle2 xLabel2 yLabel2 trimTime trimData fourierData;

disp('Session Terminated...");

catch

fclose(s);
error('Error encountered. Exiting program.');

end

% save('test.mat','time','data’,'freq','fourierFreq','magData’,'trigger")

Published with MATLAB® R2015a
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Arduino Interface for Data Acquisition and Control Systems
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Appendix IV: CAD Drawings
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